Клиническая и экспериментальная кардиология

Клиническая и экспериментальная кардиология
Открытый доступ

ISSN: 2155-9880

Абстрактный

Advances in Electrocardiogram-Based Artificial Intelligence Reveal Multisystem Biomarkers

Xichong Liu, Sabyasachi Bandyopadhyay, Albert J. Rogers*

As Artificial Intelligence (AI) plays an increasingly prominent role in society, its application in clinical cardiology is gaining traction by providing innovative diagnostic, prognostic, and therapeutic solutions. Electrocardiogram (ECG), as a ubiquitous diagnostic tool in cardiology, has emerged as the leading data source for Deep Learning (DL) applications. A recent study from our group used ECG-based DL model to identify cardiac wall motion abnormalities and outperformed expert human interpretation. Motivated by this work and that of many others, we aim to discuss advances, limitations, future directions, and equity considerations in DL models for ECG-based AI applications.

Отказ от ответственности: Этот тезис был переведен с использованием инструментов искусственного интеллекта и еще не прошел рецензирование или проверку.
Top