Журнал исследований и разработок

Журнал исследований и разработок
Открытый доступ

ISSN: 2311-3278

Абстрактный

Iapetus Hypothetical Sub-Satellite Re-Visited and it Reveals Celestial Body Formation Process in The Primary-Centric Framework

Bijay K Sharma*

Levison, et al., have carried out a simulation of the hypothetical Sub-Satellite (SS) of Iapetus, the third largest walnut-shaped moon of Saturn, and examined its contributions towards de-spinning of Iapetus and if it could possibly give rise to an ancient equatorial ridge as confirmed by close fly-by Cassini mission in 2004 for different mass ratios ‘q’=SS mass/Iapetus mass. The same study has been carried out inprimary-centric frame-work analytically in the present paper. It is found that initially when Iapetus was formed at Roche limit in circum-saturnian impact generated disc it was spinning at 13 hours spin period. Subsequently in few hundred years after the formation of the hypothetical Sub-Satellite (SS), it de-spunto 16 hours spin-period, simultaneously it cooled and froze its contemporary hydro-static equilibrium shape which we observe today as non-hydrostatic equilibrium anomaly corresponding to 16 hours. This study shows that in mass ratios q=0.3 to q=1.0, there is no circum-iapetian disc and no core-accretion formation of SS. Instead there is the formation of SS by hydrodynamic instability and at a very short time scale SS assumes stable Keplerian equilibrium configuration at outer Clarke’s orbit 4 RIap where it has de-spun Iapetus to 16 hour spin period. As the synchronous orbit sweeps past 4 RIap in about 1.68 My, SS Clarke’s orbit as abruptly collapses and leaves an ancient equatorial ridge 4.498 Gy old. In mass ratios 0.006

Отказ от ответственности: Этот тезис был переведен с использованием инструментов искусственного интеллекта и еще не прошел рецензирование или проверку.
Top