select ad.sno,ad.journal,ad.title,ad.author_names,ad.abstract,ad.abstractlink,j.j_name,vi.* from articles_data ad left join journals j on j.journal=ad.journal left join vol_issues vi on vi.issue_id_en=ad.issue_id where ad.sno_en='8877' and ad.lang_id='3' and j.lang_id='3' and vi.lang_id='3'
ISSN: 2161-0517
Raj Kumar Soni, Amol Kanampalliwar and Archana Tiwari
Development of an effective vaccine against HIV-1 is a major challenge for scientists at present. Rapid mutation and replication of the virus in patients contribute to the evolution of the virus, which makes it unconquerable. Hence a deep understanding of critical elements related to HIV-1 is necessary. Errors introduced during DNA synthesis by reverse transcriptase are the primary source of genetic variation within retroviral populations. Numerous current studies have shown that apolipo protein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) proteins mediated sublethal mutagenesis of HIV-1 proviral DNA contributes in viral fitness by accelerating human immunodeficiency virus-1 evolution. This results in the loss of the immunity and development of resistance against anti-viral drugs. This review focuses on the latest biological, biochemical, and structural studies in an attempt to discuss current ideas related to mutations initiated by reverse transcriptase and APOBEC3G. It also describes their effect on immunological diversity and retroviral restriction, and their overall effect on the viral genome respectively. A new procedure for eradication of HIV-1 has also been proposed based on the previous studies and proven facts.